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LOW-RANK MATRIX APPROXIMATION WITH WEIGHTS OR
MISSING DATA IS NP-HARD*

NICOLAS GILLIS' AND FRANCOIS GLINEUR'

Abstract. Weighted low-rank approximation (WLRA), a dimensionality reduction technique for
data analysis, has been successfully used in several applications, such as in collaborative filtering to
design recommender systems or in computer vision to recover structure from motion. In this paper,
we prove that computing an optimal WLRA is NP-hard, already when a rank-one approximation is
sought. In fact, we show that it is hard to compute approximate solutions to the WLRA problem
with some prescribed accuracy. Our proofs are based on reductions from the maximum-edge biclique
problem and apply to strictly positive weights as well as to binary weights (the latter corresponding
to low-rank matrix approximation with missing data).
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1. Introduction. Approximating a matrix with one of lower rank is a key prob-
lem in data analysis and is widely used for linear dimensionality reduction. Numerous
variants exist, emphasizing different constraints and objective functions (e.g., princi-
pal component analysis (PCA) [16], independent component analysis [6], nonnegative
matrix factorization [18]), and other refinements are often imposed on these models
(e.g., sparsity to improve interpretability or increase compression [7]).

In some cases, it may be necessary to attach a weight to each entry of the data
matrix, expressing its relative importance [8]. This is the case, for example, in the
following situations:

e The matrix to be approximated is obtained via a sampling procedure, and the
number of samples and/or the expected variance vary among the entries. For
example, it has been shown that using a weighted norm gives better results
in two-dimensional digital filter design [19] and microarray data analysis [20].

e Some data are missing/unknown, which can be taken into account by assign-
ing zero weights to the missing/unknown entries of the data matrix. This
is the case, for example, in collaborative filtering, notably used to design
recommender systems [24] (in particular, the Netflix prize competition has
demonstrated the effectiveness of low-rank matrix factorization techniques
[17]) or in computer vision to recover structure from motion [26, 15]; see also
[4]. This problem is often referred to as PCA with missing data [26, 13] and
can be viewed as a low-rank matriz completion problem with noise; i.e., ap-
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1150 NICOLAS GILLIS AND FRANCOIS GLINEUR

proximate a given noisy data matrix featuring missing entries with a low-rank
matrix.!

e A greater emphasis must be placed on the accuracy of the approximation on
a localized part of the data, a situation encountered, for example, in image
processing [14, Chapter 6].

Finding a low-rank matrix which is closest to the input matrix according to these
weights is an optimization problem called weighted low-rank approximation (WLRA).
Formally, it can be formulated as follows: first, given an m-by-n nonnegative weight
matrix W € R7*", we define the weighted Frobenius norm of an m-by-n matrix A
as ||Allw = (Zi)j Wl-jAfj)%. Then, given an m-by-n real matrix M € R™*™ and a
positive integer r < min(m,n), we seek an m-by-n matrix X with rank at most r
that approximates M as closely as possible, where the quality of the approximation
is measured by the weighted Frobenius norm of the error:

*

p* = inf |[M — X|[}, such that X has rank at most r.

X ERmxn
Since any m-by-n matrix with rank at most r can be expressed as the product of two
matrices of dimensions m-by-r and r-by-n, we will use the following more convenient
formulation featuring two unknown matrices U € R™*" and V' € R™*" but no explicit
rank constraint:

* : T2 T\2

(WLRA) — p= il 1M = UV = ZJ} Wi (M~ UVT); .
Even though (WLRA) is suspected to be NP-hard [15, 27], this has never, to the best
of our knowledge, been studied formally. In this paper, we analyze the computational
complexity in the rank-one case (i.e., for r = 1) and prove the following two results.

THEOREM 1.1. When M € {0,1}™*™ and W € ]0,1]™*", it is NP-hard to find
an approximate solution of rank-one (WLRA) with objective function accuracy less
than 2~ (mn)~6.

THEOREM 1.2. When M € [0,1]™*"™ and W € {0,1}™*", it is NP-hard to find
an approximate solution of rank-one (WLRA) with objective function accuracy less
than 2712(mn)~".

In other words, it is NP-hard to find an approximate solution to rank-one (WLRA)
with positive weights, and to the rank-one matrix approximation problem with missing
data. Note that these results can be easily generalized to any fixed rank r; see
Remark 3.

The paper is organized as follows. We first review existing results about the
complexity of (WLRA) in section 2. In section 3.1, we introduce the maximum-
edge biclique problem (MBP), which is NP-hard. In sections 3.2 and 3.3, we prove
Theorems 1.1 and 1.2 respectively, using polynomial-time reductions from the MBP.
We conclude with a discussion and some open questions.

1.1. Notation. The set of real m-by-n matrices is denoted R™*", or R}"*"
when all the entries are required to be nonnegative. For A € R™*" we denote by
A.; the jth column of A, by A;. the ith row of A, and by A;; or A(4, j) the entry at
position (i, 5); for b € R™*! = R™, we denote by b; the ith entry of b. The transpose
of Ais A", The Frobenius norm of a matrix A is defined as ||A[|% = 3=, ;(44;)?, and

|.]]2 is the usual Euclidean norm with [[b[|3 = >, b7. For W € R]*", the weighted

n our settings, the rank of the approximation is fixed a priori.
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F1G. 2.1. Objective function of (WLRA) with respect to the parameters (z,y).

Frobenius “norm” of a matrix A is defined? by ||A||%, = > i Wij (A4i;)?. The m-by-n
matrix of all ones is denoted 1,,x,, the m-by-n matrix of all zeros is denoted 0, xn,
and I, is the identity matrix of dimension n. The smallest integer larger than or
equal to z is denoted [z].

2. Previous results. WLRA is suspected to be much more difficult than the
corresponding unweighted problem (i.e., when W is the matrix of all ones), which is
efficiently solved using the singular value decomposition (SVD) [12]. In fact, it has
been previously observed that the weighted problem might have several local minima
which are not global [27], while this cannot occur in the unweighted case; see, e.g.,
[14, Theorem 1.14, p. 29].

Ezxample 1. Let

1 01 1 100 2
M=1011 and W= 100 1 2
1 1 1 1 1 1

In the case of a rank-one factorization (r = 1) and a nonnegative matrix M, one can
impose without loss of generality that the solutions of (WLRA) are nonnegative. In
fact, replacing any rank-one solution uv” of (WLRA) by its componentwise absolute
value |uvT | = |ul|v|T cannot increase the objective function. Moreover, we can impose
without loss of generality that ||u||2 = 1, so that only two degrees of freedom remain.
Indeed, for a given

xr
> >
u(z,y) = y , with {w =0yzD

2 2
S 4y <1,
the corresponding optimal v*(x,y) = argmin, ||M — u(z,y)v’ ||}, can be computed
easily.® Figure 2.1 displays the graph of the objective function ||M —u(x, y)v*(z,y)T||w
2||.|lw is a matrix norm if and only if W > 0; else it is a seminorm.
3This problem can be decoupled into n independent quadratic programs in one variable, and

admits the following closed-form solution: v*(z,y) = [(M o W)Tu]/.[WT (u o u)], where o (resp., /.)
is the componentwise multiplication (resp., division).
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1152 NICOLAS GILLIS AND FRANCOIS GLINEUR

with respect to parameters z and y; we observe four local minima, close to (@, 0),

(0, 4), (0,0), and (\/75, g) We will see later in section 3 how this example has been
generated.

However, if the rank of the weight matrix W € RTX” is equal to one, i.e., W = stT
for some s € R}* and t € R, (WLRA) can be reduced to an unweighted low-rank
approximation. In fact,

1M = UV} =Y Wiy (M =UVT)E = sit; (M~ UVT)},
~ —
2
=3 (Vi My~ (VE U (VB V)
2%

Therefore, if we define a matrix M’ such that M;; = \/s;t; M;; Vi, j, an optimal
WLRA (U,V) of M can be recovered from a solution (U’,V’) to the unweighted
problem for matrix M’ using U;. = U, /\/si Vi and V;. = V] /\/T; Vj.

When the weight matrix W is binary, WLRA amounts to approximating a matrix
with missing data. This problem is closely related to low-rank matriz completion (MC)
(see [2] and the references therein), which can be defined as

(MC) H}%Il rank(X) such that X;; = M;; for (i,5) € Q,

where Q C {1,2,...,m} x {1,2,...,n} is the set of entries for which the values of M
are known. (MC) has been shown to be NP-hard [5], and it is clear that an optimal
solution X* of (MC) can be obtained by solving a sequence of (WLRA) problems
with the same matrix M, with

- J1 if (,4) € Q,
Wij = {0 otherwise,

and for different values of the target rank ranging from r» = 1 to r = min(m,n).
The smallest value of r for which the objective function ||M — UVT||%, of (WLRA)
vanishes provides an optimal solution for (MC). This observation implies that it is
NP-hard to solve (WLRA) for each possible value of r from 1 to min(m,n), since it
would solve (MC). However, this does not imply that (WLRA) is NP-hard when r is
fixed, and in particular when r equals one. In fact, checking whether (MC) admits a
rank-one solution can be done easily.*
Rank-one (WLRA) can be equivalently reformulated as

irfle||M — A|l}  such that rank(A) < 1,

and, when W is binary, is the problem of finding, if possible, the best rank-one
approximation of a matrix with missing entries. To the best of our knowledge, the
complexity of this problem has never been studied formally; it will be shown to be
NP-hard in the next section.

Another closely related result is the NP-hardness of the structure from motion
(SFM) problem in the presence of noise and missing data [21]. Several points of a rigid
object are tracked with cameras (we are given the projections of the three-dimensional

4The solution X = uv” can be constructed observing that the vector v must be a multiple of
each column of M.
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WEIGHTS OR MISSING DATA IN LOW-RANK APPROXIMATIONS 1153

points on the two-dimensional camera planes),> and the aim is to recover the structure
of the object and the positions of the three-dimensional points. SFM can be written
as a rank-four WLRA problem with a binary weight matrix [15].5 However, this result
does not imply anything with regard to the complexity of rank-one WLRA.

An important feature of (WLRA) is exposed by the following example.

Ezxample 2. Let
17
v=(o 1)

where 7 indicates that an entry is missing, i.e., that the weight associated with this
entry is 0 (all other weights being equal to one). Observe that V(u,v) € R™ x R”,

rank(M) =2 and rank(uww?) =1 = ||[M —uwT|lw > 0.
However, we have

inf [|M —uv™||w = 0.
(u,v)ER™ XR"™

In fact, one can check that with

ule) = < ! ) and v(e) = ( 2 ) we have lim [|M — u(e)o(e)"[lw = 0.

This indicates that, when W has zero entries, the set of optimal solutions of
(WLRA) might be empty. In other words, the (bounded) infimum of the objective
function might be unattained. On the other hand, the infimum is always attained for
W > 0 since ||.||w is then a norm.

For this reason, these two cases will be analyzed separately: in section 3.2, we
study the computational complexity of the problem when W > 0, and, in section 3.3,
the case of a binary W (i.e., the problem with missing data).

3. Complexity of rank-one (WLRA). In this section, we use polynomial-
time reductions from the MBP to prove Theorems 1.1 and 1.2.

3.1. Maximum-edge biclique problem. A bipartite graph is a graph whose
vertices can be partitioned into two disjoint sets such that there is no edge between
two vertices in the same set. The MBP in a bipartite graph is the problem of finding
a complete bipartite subgraph (a bicligue) with the maximum number of edges.

Let M € {0,1}™*™ be the biadjacency matrix of a bipartite graph G, = (V3 U
Vo, E) with Vi = {s1,...8m}, Voa = {t1,...tn}, and E C (V; x V3) , i.e.,

Mij =1 <~ (Si,tj) € FE.

The cardinality of E will be denoted |E| = || M||% < mn.
For example, Figure 3.1 displays the graph G} generated by the matrix M of
Example 1. With this notation, the MBP in a bipartite graph can be formulated as

5Missing data arise because the points may not always be visible by the cameras, e.g., in the case
of a rotation.
SWith the additional constraint that the last row of V must be all ones, i.e., Vi = 11xp.
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S1 t 1
S9 1o
53 t3

Fic. 3.1. Graph corresponding to the matriz M of Example 1.

follows [11]:
min [[M — w3,

(MBP) uiv; < Mij; Vi, j,
we {013 v € {0, 1),

where u; = 1 (resp., v; = 1) means that node s; (resp., t;) belongs to the solution,
u; = 0 (resp. v; = 0) otherwise. The first constraint guarantees feasible solutions of
(MBP) to be bicliques of Gp. In fact, it is equivalent to the implication

Mij:O = wu; =0 or UjZO;

i.e., if there is no edge between vertices s; and t;, they cannot simultaneously belong
to a solution. The objective function minimizes the number of edges outside the
biclique, which is equivalent to maximizing the number of edges inside the biclique.
Notice that the minimum of (MBP) is |E| — |E*|, where |E*| denotes the number of
edges in an optimal biclique.
The decision version of the MBP
Given K, does Gy contain a biclique with at least K edges?

has been shown to be NP-complete [23] in the usual Turing machine model [9], which
is our framework in this paper. Therefore, computing |E| — |E*|, the optimal value
of (MBP), is NP-hard.

3.2. Low-rank matrix approximation with positive weights. In order to
prove NP-hardness of rank-one (WLRA) with positive weights (/W > 0), let us con-
sider the following instance:

-1 f— : M — T2
(W-14d) pr= i I uv” [y,
with M € {0,1}™*™ the biadjacency matrix of a bipartite graph Gy = (V, E) and the
weight matrix defined as

Wi-:{; it g 1Sismigji<n
where d > 1 is a parameter.

Intuitively, increasing the value of d makes the zero entries of M more important
in the objective function, which leads them to be approximated by small values. This
observation will be used to show that, for d sufficiently large, the optimal value p* of
(W-1d) will be close to |E| — |E*|, the optimal value of (MBP) (Lemma 3.3).

A maximal biclique in G} is a biclique not contained in a larger biclique, and can
be seen as a “locally” optimal solution of (MBP). We will show that, as the value
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of parameter d increases, the local minima of (W-1d) get closer to binary vectors
describing maximal bicliques in Gy.

Example 1 illustrates the situation: the graph G corresponding to matrix M (cf.
Figure 3.1) contains four maximal bicliques {s1, s3,t1,t3}, {s2, $3,t2,t3}, {83, t1,t2,t3},
{s1, 82, s3,t3}, and the weight matrix W that was used is similar to the case d = 100
in problem (W-1d). We now observe that (W-1d) has four local optimal solutions as

well (cf. Figure 2.1) close to (@, 0), (0, @), (0,0) and (L5 ﬁ) There is a one-to-one

22
correspondence between these solutions and the four maximal bicliques listed above

(in this order). For example, for (z,y) = (‘/75,0) we have u(z,y) = (%,O, @)T,
v*(z,y) is approximately equal to (v/2,0,4/2)7, and this solution corresponds to the
maximal biclique {s1, s3,t1,t3}.

Notice that a similar idea was used in [10] to prove NP-hardness of the rank-one
nonnegative factorization problem minyery ver?y ||M —uv™ ||, where the zero entries
of M were replaced by sufficiently large negative numbers.

Remark 1 (link with classical quadratic penalty method). It is worth noting that
(W-1d) can be viewed as the application of the classical quadratic penalty approach to
the biclique problem; see, e.g., [22, section 17.1]. In fact, defining F' = {(4, j)|M;; = 1}
and its complement F' = {(i, )| M;; = 0}, the biclique problem can be formulated as

(3.1) rinvn Z (1 —u;v;)* such that ujv; =0V(i,5) € F.

(L.9)eF
Indeed, in this formulation, it is clear that any optimal solution can be chosen such
that vectors u and v are binary, from which the equivalence with problem (MBP)

easily follows. Penalizing (quadratically) the equality constraints in the objective, we
obtain

Py(u,v) = Z (1 —uv;)* +d Z (uivy)?,

(i,5)eF (i,§)eF

where d > 0 is the penalty parameter. We now observe that our choice of W at the
beginning of this section gives Py(u,v) = ||[M —uvT ||, i.e., (W-1d) is exactly equiv-
alent to minimizing Py(u,v). This implies that, as d grows, minimizers of problem
(W-1d) will tend to solutions of the biclique problem (MBP). Our goal is now to prove
a more precise statement about the link between these two problems: we provide (in
Lemma 3.3) an explicit value for d that guarantees a small difference between the
optimal values of these two problems.

First, we establish that for any (u,v) such that || M —uvT||%, < |E|, the absolute
value of the row or the column of uv” corresponding to a zero entry of M must be
smaller than a constant inversely proportional to v/d.

LEMMA 3.1. Let (i,j) be such that M;; = 0. Then V(u,v) such that ||M —

T2
wot [y < [E,

i (max ful, max fuo]) < /220
min 11;1}522 ulvk,lgr;agxm upv;| ) < 7

Proof. Without loss of generality, u and v can be scaled such that [|ullz = ||v]|2

[lv]]2

without changing the product uwv”; i.e., we replace u by v = Talls U and v by
v =/ {fl2e so that ||w/|]s = [[/||> = /[[ullo[[o]]; and uw'v'T = uv”. First, observe

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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that since ||.||w is a norm,

lwo®|lw = VIB| = |[uv”[[w = IM]lw < |IM —wo”|lw < VI[E].

Since all entries of W are larger than 1 (d > 1), we have

lull2llvll2 = [luo” |7 < [[uo”|lw < V/4IE],

and then ||ul|2 = ||v]]2 < V4|E]|.

Moreover, d(0 — uv;)? < ||[M — wT||4, < |E|, so that |uv;| < %, which
implies that either |u;| < y/ %‘ or |vj| < %‘. Combining the above inequalities

with the fact that (maxi<g<n |vk|) and (maxi<p<m |up|) are bounded above by ||ul|2 =
[lv]]2 < /4| F| completes the proof. a

We now prove the following general lemma which, combined with Lemma 3.1
above, will allow us to derive a lower bound on the objective function of (W-1d) (it
will also be used in the analysis of the problem with missing data in section 3.3).

LEMMA 3.2. Let M € {0,1}™*™ be the biadjacency matrix of a bipartite graph
Gy = (V,E), let W € R?*"™ be a weight matriz such that Wi; =1 for each pair (i, j)
satisfying M;; =1, and let (u,v) be such that

. i : 1) <
(3.2) min ( max. luivg], max. |upvj|) <c

for each pair (i,7) satisfying M;; = 0, where 0 < ¢ < 1. Also let p = |E|—|E*| be the
optimal objective function value of (MBP). Then, if p > 0, we have

1M = wo" |l > p(1 — 2).

Proof. Define the biclique corresponding to the following set Q.(u,v) C {1,2,...,
m} x{1,2,...,n}k

Qc(u,v) = {i | 3j such that |u;vj| > ¢} x {j | 3i such that |u;v;| > c}.

This biclique is part of the original graph; i.e., every edge in Q.(u,v) belongs to Gp.
Indeed, if M;; = 0, then the pair (4, j) cannot belong to Q.(u,v) since, by (3.2), the
absolute value of either the ith row or the jth column of uv” is smaller than c. By
construction, we also have that the entries M;; corresponding to pairs (4, j) not in the
biclique Q. (u, v) are approximated by values smaller than ¢. The error corresponding
to a unit entry of M;; not in the biclique Q.(u,v) is then at least (1 — ¢)? (because
the corresponding weight W;; is equal to one). Since there are at least p = |E| — |E*|
such entries (because there are |E| unit entries in M and at most |E*| pairs in biclique
Qc(u,v)), we have

||M—uvT||‘2,VZ(l—c)2p>p(1—2c):p—2pc. a

We can now provide lower and upper bounds on the optimal value p* of (W-1d)
and show that it is not too different from the optimal value |E| — |E*| of (MBP).

LEMMA 3.3. Let 0 < € < 1. For any value of parameter d such that d > %,
the optimal value p* of (W-1d) satisfies

|E| = |E*| —e<p" < |E[] - [E"].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Proof. Let (u,v) be an optimal solution of (W-1d) (since W > 0, there always
exists at least one optimal solution; cf. section 2), and let us define p = |E|—|E*| > 0.
If p = 0, then p* = 0, and the result is trivial (it is the case when the rank of M
is one; i.e., G contains only one biclique). Otherwise, since any optimal solution of
(MBP) plugged into (W-1d) achieves an objective function equal to p, we must have

p* =M —w'|ffy <p=|BE|-|E"],

which gives the upper bound.

Since d is greater than 4|E|? for any 0 < € < 1, the constant o = 1/ % appearing

in Lemma 3.1 is smaller than one. This means that Lemma 3.2 is applicable, so that
we have

1M = woT |3 > p— 2ap > p— 20| = p— ¢,

which gives the lower bound (the last inequality follows from the fact that 2a|E| < e

is equivalent to the condition d > 26|€—;E|6) O

This result implies that for € = 1, i.e., for d > (2| E|)®, we have |E|—|E*|-1 < p* <
|E| — |E*|, and therefore computing p* exactly would allow us to recover |E*| (since
|E*| = |E| — [p*]), which is NP-hard. Since the reduction from (MBP) to (W-1d) is
polynomial (it uses the same matrix M and a weight matrix W whose description has
polynomial length), we conclude that solving (W-1d) exactly is NP-hard. The next
result shows that even solving (W-1d) approximately is NP-hard.

COROLLARY 3.4. For any d > (2mn)%, M € {0,1}™*", and W € {1,d}™*",

it is NP-hard to find an approzimate solution of rank-one (WLRA) with objective

) 9 3/2
function accuracy less than 1 — 733)4 )

6 _ @mn)¥? - :
Proof. Let d > (2mn)°®, 0 < e = “=Z77— < 1, and let (#,) be an approximate

solution of (W-1d) with objective function accuracy (1 —¢€), i.e., p* < p = ||[M —

avT||f, <p*+1—e. Since d = (27:—4")6 > (ZLLJ)G, Lemma 3.3 applies and we have
[E|—|E*|—e < p"<p<p*+1—-¢ < |E|-|E*|+1—¢

We finally observe that knowing p allows us to recover |E*|, which is NP-hard. In
fact, adding e to the above inequalities gives |E| — |[E*| < p+¢€ < |E| — |[E*| + 1, and
therefore

B =B [p+e|+1. D

We are now in a position to prove Theorem 1.1, which deals with the hardness of
rank-one (WLRA) with bounded weights.

Proof of Theorem 1.1. Let us use Corollary 3.4 with W € {1,d}"™*"™, and define
W' = Iw e {4, 1}™*". Clearly, replacing W by W’ in (W-1d) simply amounts
to multiplying the objective function by %, with |[M — wT|[3, = L[|M — w3,
Taking d'/* = 2(2mn)®/? in Corollary 3.4, we obtain that for M € {0,1}™*" and
W €]0,1]™*", it is NP-hard to find an approximate solution of rank-one (WLRA)

3/2
with objective function accuracy less than 2 (1 — %) = =2"Hmn)"¢ O
Remark 2. The above bounds on d have been crudely estimated and can be im-

proved. Our main goal here was to show the existence of a polynomial-time reduction
from (MBP) to rank-one (WLRA).
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Remark 3. Using the same construction as in [11, Theorem 3], this rank-one
NP-hardness result can be generalized to any factorization rank; i.e., approximate
WLRA for any fixed rank r is NP-hard. The idea is the following: given a bipartite
graph G, with biadjacency matrix M € {0,1}™*", we construct a larger bipartite
graph G} which is made of r disconnected copies of G}, whose biadjacency matrix is
therefore given by

M Omxn -+ Omxn
, Oan M Om><n
M — . ) . E {0’1}Tm><rn.
Omxn .- M

Clearly, no biclique in this graph can be larger than a maximum biclique in Gy,
and there are (at least) r disjoint bicliques with such maximum size in G}. Letting
(U, V) € R™*" xR" " bhe an optimal solution of the rank-r WLRA problem with M’
above and weights W/ = M’ +d(1,ymxrn —M') defined as before, it can be shown that,
for d sufficiently large, each rank-one factor U.x VL must correspond to a maximum
biclique of Gy.

3.3. Low-rank matrix approximation with missing data. The above NP-
hardness proof does not cover the case when W is binary, corresponding to missing
data in the matrix to be approximated (or to low-rank matrix completion with noise).
This corresponds to the following problem:

inf M—-UVTIE = WM -UvT?2 W e{o,1}™*".
UeRmX13VeRnXT l Il ; i )is {0,1}
In the same spirit as before, we consider the following rank-one version of the problem:

. _ . T2
(MD-1d) p —ueRgg{eRnllM uv” [y,

with input data matrices M and W defined as follows:

_ Mb 0s><Z _ 1s><t Bl
M = ( Ozxt dIZ > and W = < B2 IZ ) )

where M, € {0,1}**% is the biadjacency matrix of the bipartite graph G, = (V, E),
d > 11is a parameter, Z = st — |E| is the number of zero entries in My, and m = s+ Z
and n =t + Z are the dimensions of M and W.

Binary matrices By € {0,1}**Z and B, € {0,1}#*? are constructed as follows:
assume that the Z zero entries of M, can be enumerated as

{Mb(ilajl)a Mb(i27j2)7 ceey Mb(iZujZ)}a

and let k;; be the (unique) index k (1 < k < Z) such that (ix, jr) = (4,7) (therefore
k;j is defined only for pairs (¢,j) such that M;(i,7) = 0, and establishes a bijection
between these pairs and the set {1,2,...,Z}). We now define matrices By and Bs as
follows: for every index 1 < k;; < Z, we have

Bi(i ki) =1, By(i' ky)=0 Vi’ #i,

B?(k1j7]):17 BZ(ijajl):O vjl#]
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Equivalently, each column of By (resp., row of Bsy) corresponds to a different zero
entry My (i, ), and contains only zeros except for a one at position ¢ within the column
(resp., at position j within the row). Hence the matrix B; (resp., B2) contains only
zero entries except Z entries equal to one, one in each column (resp., row).

In the case of Example 1, we get

i.e., the matrix to be approximated can be represented as

10 1]0 ?
01 1]? 0
(3.3) 11 1]7 2
70 ?|d ?
0??‘?d

For any feasible solution (u,v) of (MD-1d), we also note

u® b d 4
uz(u(d) ) eR™, u® eR® and v € R?,

v® (b) t d A
UZ(,U(d) )ER”, v® e R and v € RZ.

We will show that this formulation ensures that, as d increases, the zero entries
of matrix M, (the biadjacency matrix of G, which appears as the upper left block of
matrix M) have to be approximated with smaller values. Hence, as for (W-1d), we
will be able to prove that the optimal value p* of (MD-1d) will have to get close to
the minimal value |E| — |E*| of (MBP), implying NP-hardness of its computation.

Intuitively, when d is large, the lower right matrix dI; of M will have to be
approximated by a matrix with large diagonal entries, since they are weighted by unit
entries in matrix W. Hence u,(jj) v,gci) has to be large for all 1 < k;; < Z. We then have
at least either u,(j]) or v,gci) large for all k;; (recall that each k;; corresponds to a zero
entry in M at position (i,7); cf. definitions of By and Bs above). By construction,
we also have two entries M (s + k;j,7) = 0 and M (¢,¢ + k;;) = 0 with unit weights
corresponding to the nonzero entries B (%, ki;) and Ba(k;j, j), which then also have
to be approximated by small values. If u,(j]) (resp., v,(;i)) is large, then vj(»b) (resp., uz(.b))

will have to be small since u,(ci)_vj(.b) ~ 0 (resp., ul(-b)v,g‘? ~ 0). Finally, either ugb)

v§b) has to be small, implying that M;(i, j) is approximated by a small value, because

or

(u®,v(®)) can bounded independently of the value of d.

We now proceed as in section 3.2. Let us first give an upper bound for the optimal
value p* of (MD-1d).

LEMMA 3.5. For d > 1, the optimal value p* of (MD-1d) is bounded above by
|E| — |E*|, i.e.,

(3.4) p'= _inf (M —w"|fy < |B| - |E°.

wER™ yER™
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Proof. Let us build the following feasible solution (u,v) of (MD-1d): (u(®,v(®))
is a (binary) optimal solution of (MBP) and (u(?,v(®) is defined as”

K e (0) 1-K e, (b)
@ ) d ifvy’ =0, @ _)d ifvy’ =0,
(3.5) Ug,: = {dlK J(,b) 1 and Vg, = K ¢ vj(.b) _
J J ’
where K is a real parameter and k;; is the index of the column of B; and the row of
By corresponding to the zero entry (i,7) of My (i.e., (4,7) = (ixy; Jri;))-
We have that

v),, ()T
) ow — [ 1@ Dy
D, dlz
where o is the componentwise (or Hadamard) product between two matrices, and
matrices D1 and Dy satisfy
Di(l,p)zo 1fBl(l,p):0, i —1.9
Di(l,p) € {0,d5} if By(l,p) =1, '~

In fact, let us analyze the four blocks of (uv?) o W:

1. Upper left: the upper left block of W and uv” are, respectively, the all-one
matrix and u(b)v(b)T.

2. Lower right: since the lower right block of W is the identity matrix, we need
only consider the diagonal entries of the lower right block of uv”, which are
given by u,gd)vlid) =dfor ki; =1,2,...,7Z; cf. (3.5).

3. Upper right ‘and lower left: by definition of B; and Bs, the only entries of D
and Dy which may be different from zero are given by

Dl(i, k”) = uEb)U](;i) and Dg(k’ij,j) = u,(jj)vj(b)

for all (7, 5) such that M(4,j) = 0. By construction, we have either Uj(-b) =0

or v§b) =1 1If Uj(-b) =0, then U]id? = d'~X by (3.5), and we have D1 (i, k;;) =

ul(-b)v,(j: € {0,d" %} and Do(kij,j) = 0. If v](b) = 1, we have ugb) =0
(since My(i,7) = 0) and u,(cd]) = d'~% by (3.5) whence D;(i,k;;) = 0 and
Dy(kiz, j) = d' K.
Finally, D; and Dy have at most Z nonzero entries (recall that Z is the number of
zero entries in My,), which are all equal to d*~%; therefore,

(3.6) p* <|IM —wT||3 < |E| - |E*| +22d* %) VK.

Since d > 1, taking the limit K — +o0 gives the result. 0
Ezample 3. Let us illustrate the construction of Lemma 3.5 on the matrix from

Example 1, which contains two maximum bicliques with four edges, including the one
corresponding to u(® = (0,1,1)7 and v® = (0,1,1)”. Takingu = (0,1,1,d'~ %, d¥)T

"Notice that this construction is not symmetric, and the variant using u(?) instead of v(® to
define u(® and v(d is also possible.
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and v = (0,1,1,d%,d' )T, we obtain

1 0 1]0 ? 0 0 0 0 0

01 1|7 0 0 1 1 a« K
11 1?7 2?2 |=wi=]0 1 1 | df a5 |,
70 ?]d ? 0 dK g -K| g g0-K

0 ? 727 d 0 d&k gk | 2K d

with |[M — wT |3, = (|[E| — |E*|) + 2d*3~5) = 3 + 2¢>0=5) which is less than the
bound 3 + 4> ~%) guaranteed by (3.6).

We now prove a property similar to Lemma 3.1 for any solution with objective
value smaller than |E|.

LEMMA 3.6. Let d > \/|E| and (i,j) be such that My(i,j) = 0. Then, the
following holds for any pair (u,v) such that ||M —uvT||3, < |E|:

2|E|
(3.7) min( max |uvg|, max |upvj|) < \/—|7|41
1<k<n 1<p<m (d— TE])?
Proof. Without loss of generality, we set ||[u(®]||z = [[v(®||2 by scaling u and v

without changing uv”. Observing that

[l allo®lz = /BT = [0 | = 1Myl < [[My = 07|
<M = flw < VI,

we have [[u®||s]|o® ]|z < 2/TE] and [[u®]; = [[o®|l> < v2|EJ}.

Assume that M, (i, j) is zero for some pair (7, j) and let & = k;; denote the index of
the corresponding column of By and row of By (i.e., such that By (i, k) = Ba(k,j) = 1).
By construction, u,(cd)vlid) has to approximate d in the objective function. This implies

that (u,gd)vlid) —d)? < |E| and then,

uPo\ > d - \/|E] > 0.

Suppose that |ukd)| is greater than |U () | (the case Where |v](€d)| is greater than |u,(€d)|
is similar), which implies that |u | > (d — |E|2)2. Moreover, since By(k,j) is a
unit weight, we have that u,(c )vj has to approximate zero in the objective function,

implying
d
(Vv =02 < B = [uf"v;] < V]E].

Hence
L VIE |E|?
(3'8) |UJ| S (d) S 1
DRk

and since (maxi<p<m |up|) is bounded by [[u®||; < V2|E|, the proof is com-
plete. d

Using Lemma 3.2, we can now derive a lower bound for the value of p*.

LEMMA 3.7. Let 0 < € < 1. For any value of parameter d strictly greater than

S‘E‘ + |E| the Znﬁmum p* Of (MD—ld) satisﬁes
B| = 1B - e <.
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Proof. Let us note that p = |E| — |E*|. If p = 0, then the result is trivial since
vz et

7 (d—/1E])®
d> 8“3 > +|E|2 is equivalent to 2|E|3 < €. Then, by continuity of (MD-1d), for any
d such that 0 < e, there exists a pair (u,v) such that

p* = 0. Otherwise, suppose that p* <p—eandlet g = . First observe that

1My = u®oOT|[f, < |IM —wT|[fy <p- 0 <|B].

In particular, let us take § = 2|F|8 < e. Observe that 8 < 1 as soon as d >
2|E|? 4 |E|? (which is guaranteed because 0 < ¢ < 1). By Lemmas 3.6 and 3.2
(applied on matrix M, and the solution (u(®,v(®*))), we then have

p—2Bp < ||[My —uPo®T |3, < ||M — w7}, <p-0.

Dividing the above inequalities by p > 0, we obtain

5 )
1-28<1—=-<1-——==§<2|E|B,
P |E|

a contradiction. a
COROLLARY 3.8. For any d > 8(mn)"/? + /mn, M € {0,1,d}™*", and W €

{0,1}™*" it is NP-hard to find an approzimate solution of rank-one (WLRA) with

/
objective function accuracy 1 — %.

Proof. Let d > 8(mn)"/? + /mn, 0 < € = % < 1, and let (u,?)

be an approximate solution of (W-1d) with absolute error (1 —¢), ie., p
/
|IM — uvT||%, < p* +1—e Lemma 3.7 applies because d = 8(m€+)72 + vmn >

S(Sﬁ—%m + /st > 8|€—|27/2 + |E|*2. Using Lemmas 3.5 and 3.7, the rest of the proof
is identical to the one of Theorem 1.1. Since the reduction from (MBP) to (MD-1d)
is polynomial (description of matrices W and M has polynomial length, since the
increase in matrix dimensions from M, to M is polynomial), we conclude that finding
such an approximate solution for (MD-1d) is NP-hard. O

We can now easily derive Theorem 1.2, which deals with the hardness of rank-one
(WLRA) with a bounded matrix M.

Proof of Theorem 1.2. Replacing M by M’ = éM in (MD-1d) gives an equivalent
problem with objective function multiplied by &, since &||M — woT|[3, = |[M' —
“ZT ||3,. Taking d = 2°(mn)"/? + \/mn in Corollary 3.8, we find that it is NP-hard
to compute an approximate solution of rank-one (WLRA) for M € [0,1]™*™ and

*

<]§:

mxn . . . . 1 2v2(mn)"/%\
W e {0,1} , and with objective function accuracy less than 2 (1 — W) =
oz = 272 (mn) 7. O

4. Concluding remarks. In this paper, we have studied the complexity of
the weighted low-rank approximation (WLRA) problem, and proved that computing
an approximate solution with some prescribed accuracy is NP-hard, already in the
rank-one case, both for positive and binary weights (the latter also corresponding to
low-rank matrix completion with noise, or PCA with missing data).

The following more general problem is sometimes also referred to as WLRA:

4.1 inf M — 2
(1) UeRleE}VeRTX" || UV”(P)’

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



WEIGHTS OR MISSING DATA IN LOW-RANK APPROXIMATIONS 1163

where ||A||%P) = vec(A)T Pvec(A), with vec(A) a vectorization of matrix A and P an
mn-by-mn positive semidefinite matrix; see [25] and the references therein. Since our
WLRA formulation corresponds to the special case of a diagonal (nonnegative) P,
our hardness results also apply to problem (4.1).

It is also worth pointing out that, when the data matrix M is nonnegative, any
optimal solution to rank-one (WLRA) can be assumed to be nonnegative (see the
discussion surrounding Example 1). Therefore, all the complexity results of this paper
apply to the weighted nonnegative matrix factorization (weighted NMF) problem,
which is the following low-rank matrix approximation problem with nonnegativity
constraints on the factors:

min ||[M —UVT||%,  such that U >0, V > 0.
UeRmx" vV eRnxr
Hence, it it is NP-hard to find an approximate solution to rank-one weighted NMF
(used, e.g., in image processing [14, Chapter 6]) and to rank-one NMF with missing
data (used, e.g., for collaborative filtering [3]). This is in contrast to unweighted
rank-one NMF, which is polynomially solvable (e.g., taking the absolute value of the
first rank-one factor generated by the SVD). Note that (unweighted) NMF has been
shown to be NP-hard when r is not fixed [29] (i.e., when r is part of the input).
Nevertheless, many questions remain open, including the following:

e Our approximation results are rather weak. In fact, they require the objective
function accuracy to increase with the dimensions of the input matrix, in
proportion with (mn)~¢, which is somewhat counterintuitive. The reason is
twofold: first, independently of the size of the matrix, we needed the objective
function value of approximate solutions of problems (W-1d) and (MD-1d) to
be no larger than the objective function of the optimal biclique solution plus
one (in order to obtain |E*| by rounding). Second, parameter d in problems
(W-1d) and (MD-1d) depends on the dimensions of matrix M. Therefore,
when matrices W or M are rescaled between 0 and 1, the objective function
accuracy is affected by parameter d, and hence decreases with the dimensions
of matrix M. Strengthening of these bounds is a topic for further research.

e Moreover, as pointed out to us, these results say nothing about the hardness
of approximation within a constant multiplicative factor. It would then be
interesting to combine our reductions with inapproximability results for the
biclique problem (which have yet to be investigated thoroughly; see, e.g., [28])
or construct reductions from other problems.

e When W is the matrix of all ones, WLRA can be solved in polynomial-time.
We have shown that, when the ratio between the largest and the smallest
entry in W is large enough, the problem is NP-hard (Theorem 1.1). It would
be interesting to investigate the gap between these two facts; i.e., what is the
minimum ratio between the entries of W that leads to an NP-hard WLRA
problem?

e When rank(W) = 1, WLRA can be solved in polynomial-time (cf. section 2)
while it is NP-hard for a general matrix W (with rank up to min(m,n)).
What is the complexity of (WLRA) if the rank of the weight matrix W is
fixed and greater than one, e.g., if rank(W) = 27

e When data are missing, the rank-one matrix approximation problem is NP-
hard in general. Nevertheless, it has been observed [1] that when the given
entries are sufficiently numerous, well distributed in the matrix, and affected
by a relatively low level of noise, the original uncorrupted low-rank matrix
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can be recovered accurately, with a technique based on convex optimization
(minimization of the nuclear norm of the approximation, which can be cast
as a semidefinite program). It would then be particularly interesting to ana-
lyze the complexity of the problem given additional assumptions on the data
matrix, e.g., on the noise distribution, and deal in particular with situations
related to applications.
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are grateful to the insightful comments of the anonymous reviewers, which helped to
improve the paper substantially.
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